Systematic Method for Screening Ionic Liquids as Extraction Solvents Exemplified by Extractive Desulfurization Process

Z. Song¹, T. Zhou¹, Z. Qi², K. Sundmacher¹,³

¹ Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg
² Max Planck Partner Group at East China University of Science and Technology, Meiling Road 130, 200237 Shanghai
³ Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg

MOTIVATION

Ionic liquids (ILs) are highly promising alternatives for volatile organic solvents in liquid-liquid extraction, gas absorption, extractive distillation, etc. Application challenges include:

- A large number of ILs, various separation processes,
- Complex effects of IL molecular decision variables at different levels.

Goal:
Develop systematic methods for screening practically attractive IL solvents for separation processes.

IL SCREENING: STATE OF THE ART

CURRENT METHODS
- **Experimental**: Expensive and time-consuming, limited to simple laboratory experiments
- **Computational**
 - Ab initio calculation
 - Computational expensive
 - NRTL, UNIQUAC, EoS (PC-SAFT)
 - Require experimental data, molecule-specific
 - Limited predictive ability for novel systems

UNIFIC-I
- GC-based, limited group parameters available
- COSMO-RS model
- Independent of experiment, molecule/group profile
- Virtually applicable to any system
- Good qualitative & acceptable quantitative prediction

Main Limitations of Previous Screening
- Mixtures to be separated
- MW of ILs
- Physical properties: Process performance

SYSTEMATIC METHOD FOR IL SCREENING

- **Modified thermodynamic criteria**
 - \(\beta = n_B^0 m_B^0 \) (finite dilution, molar
 - \(S = m_B^m_m_B^S \) (mole)
 - \(S_L = m_L^m \) (mole)

- Effect of molecular weights (MWs) of ILs, effect of practical condition

- **Physical property estimation by GC models** [ref]
 - \(T_m(K) = 288.7 + \sum n_B^0 m_B^0 + \frac{\sum n_B^0 m_0 B}{\sum n_B^0 m_B^S} \) (melting point)
 - \(\ln \eta = 6.982 + \sum n_B^0 m_B^0 + \frac{\sum n_B^0 m_0 B}{\sum n_B^0 m_B^S} \) (viscosity)

- **Process simulation of IL-based processes** [ref]
 - ILs defined as pseudo-component in Aspen Plus [ref]
 - MW, \(\rho, T_m \), critical properties
 - NRTL model as the thermodynamic model parameters regressed from COSMO-RS data

- **Systematic IL screening**
 - 3 steps
 - decomposition
 - a list of top candidates

APPLICATION – EXTRACTIVE DESULFURIZATION

EDS case study
- removal of trace aromatic sulfur compounds from fuel oils
 - simulated: thiophene/naphthalene mixture (sulfur content 100 ppm)
 - Sulfolane is employed as the benchmark solvent

Step 1: Pre-screening by modified thermodynamic criteria

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(\eta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_B^0</td>
<td>m_B^S</td>
</tr>
</tbody>
</table>

Step 2: Further screening by \(T_m \) and \(\eta \) constraints

Step 3: Final selection by process simulation

ILs:
- Sulfolane process requires 2 distillation columns, more capital cost
- Required SF of all ILs is lower than sulfolane, less solvent needed
- IL regeneration: different dependencies of the operating pressure on the temperature, different energy cost

ILs: much lower energy and solvent consumption, higher fuel product recovery ratio

ACKNOWLEDGEMENT

- National Natural Science Foundation of China (NSFC 1447123), Major State Basic Research Development Program of China (973 Program 2012CB720502)
- Deutsche Forschungsgemeinschaft (DFG) for the Collaborative Research Center SFB/TRR 63 “Integrated Chemical Processes in Liquid Multiphase Systems,”

REFERENCES